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1.0 INTRODUCTION

Ergodicity is the condition which enables time-averaged statistics of random
processes to approximate those obtained by ensemble averages. This condition is
often assumed in estimation and other signal processing problems since a single
realization consisting of a window of time samples is most often available in
practice. However, the dependence of the ergodic behavior of random processes
upon fundamental process characteristics such as its correlation and statistics as
well as the resulting implications on estimation performance evaluation is not often
considered. For example, the covariance estimate performed over multiple range
cells in an airborne radar application in which the ground clutter is non-
homogeneous will exhibit non-ergodic behavior. In this case, estimates obtained
by averaging time samples of the data within a given range cell will not be
equivalent to those obtained by averaging over range cells.

For the class of non-Gaussian processes known as spherically invariant
random processes (SIRP's), the ergodic property does not hold; i.e., the estimates
obtained from time-averages are not equivalent to those obtained from ensemble
averages. SIRP's are generalizations of the Gaussian random process in that the
PDF of every random vector obtained by sampling a SIRP is uniquely determined
by the specification of a mean vector, a covariance matrix and a characteristic first
order PDF. In addition, the PDF of a random vector obtained by sampling an SIRP
is a monotonically decreasing function of a non-negative quadratic form.
However, the PDF does not necessarily involve an exponential dependence on the
quadratic form, as in the Gaussian case. We also note that many of the attractive
properties of the Gaussian random process also apply to the SIRP's. Finally, in the
above example of the airborne radar, the SIRP's have been noted to model the
statistics of the gound clutter interference [5].

The ergodicity condition for the biased, time-averaged correlation function
estimator expressed in terms of the process correlation and statistics (non-Gaussian
as well as Gaussian) is derived in this paper. Specifically, analytic expressions are
developed for the variance and bias of a time-averaged correlation function
estimator for stationary discrete complex spherically invariant random processes
(SIRP's) [1]. If the variance of the estimator approaches zero in the limit of
infinitely large sample sizes, the ergodic condition holds. However, for SIRP's, it
is shown that this condition does not hold. The analytic expressions derived here
provide insight regarding both the correlation and statistical parameters which



control the ergodic dependence. Furthermore, they are shown to reduce to the
expressions applicable to Gaussian processes as a special case. The development
also pertains to the general class of SIRP processes with unconstrained quadrature
components (i.e., for processes with elliptical symmetry) where the bandpass
processes are, in general, non-stationary [2,3]. For the special case of complex
processes with constrained correlation between the quadrature components (i.e.,
circular symmetry), the resulting analytic expressions attain a simplified form.
Validity of the analytic expressions is presented using Monte-Carlo simulations.
The affect of the estimator performance when used in a detection scheme designed
for SIRP's is reported in [4].
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2.0 NON-GAUSSIAN PROCESS DEFINITION

In this section, we discuss the class of non-Gaussian random processes

known as Spherically Invariant Random Processes (SIRP's) [1,51. Following
Rangaswamy [5], we first define a spherically invariant random vector (SIRV) as a
random vector (real or complex) whose PDF is uniquely determined by the
specification of a mean vector, a covariance matrix and a characteristic first order
PDF. A spherically invariant random process (SIRP) is a random process (real or

complex) such that every random vector obtained by sampling this process is an
SIRV. An important theorem in the theory of such processes is the representation
theorem [I) stated as follows.

Theorem 1. If a random vector is an SIRV, then there exists a non-negative
random variable S such that the PDF of the random vector conditioned on S is a
multivariate Gaussian PDF.

For an SIRV, we consider the product

Y-l,N = SX1,N (2.1)

where yN = [Y1 Y2 ... YN]T denotes the SIRV, xlN = [xI x2 ... XN]T is a Gaussian

random vector with zero mean and covariance matrix I and s is a real, non-
negative random variable with characteristic PDF fs(s). Statistical independence

between _j1N and s is assumed for convenience. In [5], several characterisic PDFs

for fs(s) are considered which provide various PDFs for fy(y). Among others, they

include the Chi, Weibull, Generalized Rayleigh, Rician, the K-distribution,
Laplace, Cauchy, Student-t and, as a special case, the Gaussian.

In section 3, we consider K-distributed processes using a form of the
Gamma distribution for fs(s). For processes consisting of in-phase (real) and

quadrature (imaginary) components, the K-distributed envelope PDF is expressed

as

fR(r) =K& ([%Far) (r) (0<r!oo) (2.2)fr)-F(a) 2 J-a

where fF(o) is the Eulerian Gamma function, K,(.) is the modified Bessel function

of the second kind with order cc. Here, a is refered to as the shape parameter.
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3.0 VARIANCE OF THE TIME-AVERAGED AUTOCORRELATION
FUNCTION

The ensemble autocorrelation function is defined as the expectation of

lagged products of a given stationary process when averaged over an ensemble of

realizations. If this function is equal to the time-averaged autocorrelation function

obtained from a single realization, the process is called autocorrelation ergodic.
Consider the time-averaged estimate of the autocorrelation function using NT

temporal observation samplesof the iPh channel process yi(n) [6]

N T-I-I

M 1 yi(n)yi (n-I) 0< I < NT- 1

n=O
fy(I,NT) = (3.1)N -Ill-1

SyX yi(n)yi(n-iii) -(NT-1)_<I<0.
n=O

For M = N-r, we obtain the biased estimator fy(I,NT) while for M=NT-I, we

have the unbiased estimator. In this paper, we consider the biased correlation

function estimator with limited data since it ensures positive semi-definiteness.

The derivation for the unbiased estimator follows directly. A similar derivation

also holds for the cross-correlation function using relations developed in [3]. We
now define

0(n,I) = yi(n)yi (n - I) (3.2a)

and

Ro,(k,I) = E[f(n,I)* (n - k,I)] (3.2b)

so that

Co(k,I) = E[ {f(n,I) - E[O(n,I)] } { 0*(n-k,I) - E[O*(n-k,I)] }] (3.2c)

= Ro(k,I) - E[0(n,I)]E[0*(n-k,I)]. (3.2d)
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Using eq(3.1), the mean Ry(INT) and variance Vy(I,NT) of /y(INT) Can now be

expressed as

1NT-I-i
1T I Ry() 0 <_(<1 r -1

T n=ORy(I,NT) = L[lky(I,NT)] NT_111_1 (3.3)

1. NT 1 Ry(I) -(N-1)<I<0
NTn--0 -)ý150

where Ry(I) = E[yi(n)yi (n - I)] and

Vy(I,NT) =

= E { [iy(I,NT) - E[tky(I,NT) ]][(I,NT) - E[f (I,NT)} (3.4a)

= E[kLy(INT),A(I,NT)] - E[-(I,NT)]E[ý(I,NT)] (3.4b)

[iI I- I CO(k,l). (3.4c)
Tk=-(N T-1ll"1) N

Expanding eq(3.3), we have

"IRy(I)-NI--Ry(1) 0T <Nr-1

ETb' (,NT)] III (3.5)
Ry(I) -NTTRy(I) -(Nr-i) <1<•0.

We note that the second term on the right hand side of eq(3.5) denotes the bias of
the estimate. Thus, the magnitude of the bias IBI is expressed as

IBI= III IRY(I)I/NT. (3.6)

From eq(3.2a)

E[&(n,I)] = Ry(I) (3.7a)

5



and

E[O*(n-k,I)] = Ry(I) (3.7b)

so that from eq(3.2d)
C(k,I) = RO(k,l) - IRy(1)12. (3.8)

And so, eq(3.4c) becomes

Vy(I,NT) -I - "T [R.(k,1) - IRy(I)J2]. (3.9)
k=-(NvT-11I-1)

We first consider RO(k,l) in eq(3.9). Using eq(3.2a), we have

RO(k,I) = E[O(n,I)A*(n - k,I)] (3.1Oa)

= E[yi(n)yi (n - I)yi (n - k)yi(n - I - k)]. (3.10b)

From the representation theorem described in section 2, yi(n) = sxi(n) where
s is a real, non-negative random variable. Since s is statistically independent of
xi(n), eq(3.0Ob) can be expressed as

Rd(k,1) = E[s4 ]E[xi(n)xi (n - I)xi (n - k)xi(n - I- k)]. (3.11)

The second expectation contains zero-mean, jointly stationary Gaussian

quadrature components xii(n) and xiQ(n). It can therefore be expressed as [see

Appendix B]

E[xi(n)xi (n - I)x1(n - k)xi(n - I - k)] = IRx(I)I 2 + IRx(k)I 2 + F x(I,k) (3.12)

where

Rx(I) = E[xi(n)xi (n - 1)] (3.13a)

and
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F,..(Ik) = {R, (l+k) - RQQ(I+k)} {R 1(I-k) - RQ(I-k)}
+ [ RQI(I+k) + RX (I+k)} { (I-k) + RIQ(1-k)

-j { RxI(I+k)- RQ(I+k)} RQ(I-k) + RIQ(I-k)}

+ j { R•X(I-k) - RxQ(1-k)} {RQI(I+k) + R~x(I+k)}. (3.13b)

And so, eq(3.1 1) becomes

R4,(k,I) = E[s 4] { IRx(1)I 2 + IRx(k)I 2 + Fxii(I,k)). (3.14)

Next, we consider the term IRy(I)l 2 in eq(3.6). Since

Ry(1) = E[vi(n)yi (n - I)] = E[s 2]Rx(I), (3.15)

then
IRy(I) 2 = E2[s2]IRx(l)1 2. (3.16)

Using eqs(3.14) and (3.16) in (3.9), we have

1 [ ,lI~
Vy(INT) = N [TT I - NTll { E[s4] [lRx(l)l 2 + lRx(k)l 2 + ReFxii(I,k)}

k=-(NT-III-1)

- E2[s2]lRx(I) 2 } (3.17)

where the real part of Fxii(I,k) results due to the cancellation of the imaginary terms

in eq(3.13b) when the summation over positive and negative values of k is taken.
For circular Gaussian processes, RH(I) = RxQ(I) and R'Q(I) =- RQ1(I), so that from

eq(3.13b) Fxii(Ik) = 0 for all I,k. In this case, eq(3.17) can be written as

Vy(INT) =

1 NT+l-
II -11"+l] { E[s4]lRx(k)12 + [E[s4]-E2[s2]]IRx(I)I 2 }" (3.18)

k=-(NT-11I-1)
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Since Rx(I) does not depend on k, the summation over the second term in the { }

bracket results in

I N I[1 - 1+1ki{ {E[S4]-E2[s2]lIRx(I)1 2  = E[s4]-E2[s2]IIRx(I)12.
k=-(NT-111- 1)

(3.19)
Thus, eq(3.18) becomes

NVy(INT) =

NT-IlllI-1kI 3.0
1= 1T ( 1-T l] {E[s4]lRx(k)12 I+ {E[s4]-E2[S2]}IRx(I)12 (3.20)k=-(N T- 11-1)

Eq(3.20) is the significant contribution of this paper. It describes the
variance of the time-averaged correlation function estimator for SIRP's. What is
most significant is the fact that the second term on the RHS of eq(3.20) is not
dependent upon NT; i.e., as the time window sample size Nr increases, this term
does not provide a decrease in Vy(I,NT).

We now introduce the error variance EVy(I,NT) defined as

EVy(I,NT) =

E { [ty(I,NT) - Ry(INr) ]][•(I,NT) - Ry(I,Nr)} (3.21)

From eq(3.6), the magnitude of the bias B can be expressed as
III III

IBI = jrIRy(I)I = gTE[S2] Rx(I)I (3.22)
NT T

and recognizing that the error variance EVy(INT) can be written as

EVy(INT) = Vy(INT) + IB12  (3.23)

we have

8



EVy(INT) =
NT-Ill-1

INTT I [ 1- I1+lkfNl E[s4]lRx(k)12 } + {E[s4]_E2[s2] } Rx(i)j2
N T NT

k=-(NT-II-1
1112

+ -. 2E2 [S2 ]lR(1) 2  (3.24)
NT

For the special case of K-distributed processes with shape parameter a and

scale parameter b, it can be shown [see Appendix C] that E[s4] = (a)(a+l)/b4 and
E[s 2] = a/b. We can let E[s 2] = 1 without loss of generality. And so, for b=
eq(3.20) becomes

1 NT-,N- I _• {llRx(k)12 + •Rx(1)12

Vy(INT) = 1 NT 1[ (3.25)
k=-(NT-II-1J

For Gaussian processes, a-*oo and eq(3.25) reduces to eq(5.2.8) of [3]; i.e.,

1 N T-111-1
Vy(I,NT) - N T E. Rx(k)P2. (3.26)

k=-(NT-III-1)

We note that the term (1/af)Rx(I)1 2 in eq(3.25) becomes the dominant term

as a is reduced; i.e., as the processes tend toward non-Gaussian with high tails.
This term also introduces a stronger dependence of the variance upon the lag value

than the corresponding Gaussian case expressed in eq(3.26). This result is also true

for the error variance expressed in eq(3.24). What is most significant, however, is
the fact that this latter term is not dependent upon NT; i.e., as the time window
sample size Nr increases, this term does not provide a decrease in Vy(INT). This

is an indication of the fact that the SIRP processes are non-ergodic. In this case,
Vy(INT) does not tend toward zero as NT approaches infinity. In section 4, we

present results which illustrate the significance of this result.

9



4.0 RESULTS

In this chapter, we validate the analytic expressions developed in section 3
using Monte-Carlo simulation. K-distributed processes with an exponentially
shaped correlation function are generated via a first order autoregressive AR(1)
process. In this case the white noise driving term is K-distributed. In each case,
NR realizations of the random process yi(n) are generated with NT time samples per

realization. The time-average estimator is used on each tnt realization to compute
Ry(INTIm). The sample variance of these estimates are then computed over the NR

realizations using the expressions derived in the next subsection. For NR large,

these values are compared to those obtained via the ensemble averaged expressions
in the previous chapter.

4.1 Computed Variance of the Time-Averaged Correlation Functions

Consider NR realizations of the random process y1(n). Let each realization
be indexed by the integer m; m=1,2,...,Na. Corresponding to the realization with

index m, let fty(INTIm) be the biased, time-averaged cross-correlation function

estimate using Nr observation samples. The sample variance of the time-averaged
cross-correlation function estimate is computed from NR realizations using the

expression

Var['y(INT):NR] N _1N , T y(t,NRIm) 12 (4.1)

where
- 1  NR

fty(INRIm) = N I k(I,NTIm). (4.2)

10



4.2 Simulation Results

In this section, we validate eq(3.21) using computer generated random
processes. Specifically, a scaler autoregressive process of order one AR(1) with a
K-distributed white noise driving term was used to synthesize the data time series.
The correlation function for this process is exponential and can be expressed in
terms of the one-lag temporal correlation parameter X such that [2]

Ry(k) = o(X))IklexpUO(k)I (4.3)

2.
where a,• is the variance of the observation data process y(n) and X is the one-lag

temporal correlation parameter such that 0<_X:51. In the special case of the AR(l)

process used here, ay =4, 0(k)=0 and ý=-a(l) where a(l) is the AR(l) coefficient.

Computed results were obtained using Monte-Carlo simulation with 10,000
realizations. A plot of Vy(I,NT) versus the shape parameter ot is shown in Figure 1

for lag values 1=0,1 and NT=100. These curves reveal that for cz<5 (i.e., for non-
Gaussian SIRP's with high tails), Vy(lNT) increases dramatically as a decreases.

In Figure 2, analytic values of Vy(I,NT) are plotted versus the time sample

window size, Nr, with ax as a parameter. These curves show the effect of the

second term on the right hand side of eq(3.21) which is independent of NT. These

results show that the estimator lacks consistency; i.e., Vy(I,NT) does not decrease

with increasing NT. This results from the non-ergodic property of the SIRP's.
Finally, in Figure 3, analytic and computed values of Vy(INT) versus the

one-lag temporal correlation parameter X are shown for lag values 1=0,1. The
AR(l) process had a shape parameter of a=0.3 in this case. We observe that

Vy(I,NT) for '-O is relatively insensitive to changes in the temporal correlation of

the processes. Again the second term on the RHS of eq(3.21) accounts for this

effect. We also point out that at lag 1=0, the correlation function estimator is

estimating the variance of the process. Thus, the high tails for this process affect
the estimate of the variance. For lag values other than zero, however, Vy(INT) is

highly dependent on the temporal correlation. This result can also be explained by

the second term in eq(3.21) which decreases with decreasing temporal correlation

for lag values other than zero.
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Figure 1 Analytic and computed Vy(I,NT) versus the shape parameter (x for lag
2values I = 0, 1 for an AR(l) K-distributed process with a2 = 4, Nr=100.
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Figure 3 Analytic and computed Vy(INT) versus the one-lag temporal correlation

parameter X for lag values 1=0 and 1 using an AR(1) K-distributed process
2with shape parameter a = 0.3, oyy = 4, NT=100.
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5.0 CONCLUSIONS

In this paper, general analytic expressions have been derived for the
variance, the error variance and the bias of the time-averaged correlation function
estimator when observing non-Gaussian spherically invariant random processes
(SIRP's). These expressions were validated for the special case of a K-distibuted
AR(1) process via a Monte-Carlo computer simulation. Furthermore, these

analytic functions were expressed in terms of the process variance, the temporal
correlation, the data window sizes used to average the estimates, and the shaping
parameter of the K-distibuted process. Finally, they were shown to reduce to the
expressions for Gaussian processes as a special case.
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APPENDIX A DERIVATION OF EQ(3.3)

In this appendix, we derive the expression for the variance of fy(IN)

expressed by eq(3.3). Consider the biased, time-averaged estimate of the

autocorrelation function [6]; ie.,

N -I-1

N Y yi(n)yi (n-I) 0< 1< NT-I

Afy(INT) = (A.1)
1NT-Ill-i

NT yi(n)yi(n-lll) -(N T-1): 1 < 0.
n=0

where the symbol A in this discussion designates the quantity as an estimate. Let

0(n,I) = yi(n)yi (n - ). (A.2)

Assuming stationarity, the covariance of 0(n,I) can be expressed as

CO(k,l) = E[ {[ (n,I)-E[0(n,I)] { *(n-k,) - E[o *(n-k,l)] 1] (A.3a)

= E[o(n,I)4*(n-k,l)] - E[0(n,I)]E[0 * (n-k,)]

- E[0(n,I)]E[* (n-k,I)] + E[0(n,I)]E[0*(n-k,I)] (A.3b)

= Ro(k,I) - E[0(n,I)]E[0*(n-k,l)] (A.3c)

where

R,(k,I) = E[O(n,1)0*(n - k,I)]. (A.4)

Assuming stationarity, we have from eq(A.2),

E[0(n,I)] = Ry(I) (A.5a)

and
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[* (n-kIl)] = R;*(I) (A.5b)

so that

CO,(k,l) = RO(kI) - IR Y(1)1 2  (A.6a)

=E[yi(n)yi (n - I)yj (n - k)yi(n - I - k)] - I R (II (A.6b)

Now consider the variance of the complex time averaged estimate k ~ (1,N)

which can be expressed as

Vy(INT) = E{I [ftY(1,NT-E[fty(I,NT) ]][k* (1,NT)-E~ *;(1,NT] (A.7a)

=E[k(I,N )&,(I,NT) - E[&,(I,NT)][&(I,N9] (A.7b)

Using eq(A. 1) for positive and negative 1, we have

fty(I,NT)fty(I,NT)=

1 NT-I-NT-I-i nIy(1 ~pI

W2 Y, Y y1(n)y*(-, i(~ip1 0 < I < NT- I
NTn=O p=-O

1NT-III-NT-III-1 (A.8)
Y, y1 (n)yi(n-11I)y (piy(p-111) -(NT -1):5 1•<0

INT nI(JP0-

so that

1NT-I-INT-I-l
2 Y, Y E[yj(n)1y,(n-1)y,*(p)yj(p-I)] 0!- 1:I NT -1

NT -- 'NI' (A.9)

-2 Y Buy1 (n)yj(n-I1i)yj(p)yj (p-Ill)] -(Nr-l) • I •0.
-N T n=0 p=0O

Also,
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I NT-I-INT I Ry(O) 0!51:5NT-1I

E[ky(INT)] = (A.10a)

1 NT-11-I
NT Y, Ry(l) -(NT-1)_<I _! 0.

n=O
Expanding eq(A. IOa), we have

Ry(I)-NI--Ry(1) 0515Nr-1

Ry(I) -TTRy(I) -(Nr-1) 1• 0.
NT&

We note that the second term on the right hand side of eq(A. lOb) denotes the bias
of the estimate. Thus, the magnitude of the bias is expressed as IBI= III IRY(I)I/NT.
From eq(A. 1Oa), we have

E[fty(I=NT)]E[ =(INT)]

1 NT-I-1NT-I-1
W-2T Y, Y,0Ry(1)12= 0 -< 1:< NT

NT n=0 p=O
NTIlNTIli(A.11)L NT-1l1-INT-1iI-1 112 _N _ 5 !5 .

IN T n=O p=O

Using eqs(A.9) and (A. 11) in eq(A.7b), we obtain
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VY(lNT)=

NT-I-NT-I-i
Y, I[E[yi(n)yi (n-l)yi (p)yi(p-I)] - IRy(I)I 2}

NT n=O p=O

for O!ýl•ýNr -1

N 2{E[y 1 (n)yi(n-IIl)yi(p)yi (p-111)] - lR (Ily
NT n=O p=-O

for -(NT-l1)•5l•O .

Using eq(A.6b) in (A. 12)

1 NT-1IlNT-l-i
W2 I ICO(n-p,I) O:5l•NT-l

NT n=O p=O
VY(l,NT) NT11=N-1- (A. 13)

NT n=O p_=O

We now let k n -pwhere

-(NT -- I )•ýk:5NT-I1-l1 for 0:5l15NT -1 (A.14a)

-(NT -Ill - 1)•5k•5NT -lIII- 1 for -(NT-l)•l•O< . (A.il4b)

We also note that eq(A.i4b) is equivalent to eq(A.14a) for negative values of I so
that
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Vy(I,NT) =

I NT-Ill-i

N2 Y [NT" -i1-IkI] CO(k,I) 0<_•1_ N T -1
NTk=-(NT-lll-1)

ffi •(A.15)

1 NT-11l-i
2 E [NT- I,- IkI] Cý(k,•,I) -(NT-i) < 1<0.

N.rT k=-(NT-IIl-1)

However, for negative lag I, we have

CO(k,III) = CO(k,I) (A.16)

so that after dividing the bracketed factor by one of the Nr terms in the

denominator

V(I) __NT-Ill-i r I~lkl +I!

Vy (I,N T I NT-11-1) I- NT C#(k,I) (A.17)k_(NT._.1NT

for both positive and negative values of I. In Appendix G of [3], we show that the
imaginary terms in C,(k,I) cancel when summed over positive and negative values

of k so that

Vy(lN NTl-1_ 1 1 IIl]+kr Re{( C(k,I)} (A.18)V('T)-= NT I NT
T k=-(NT-I1- 1)
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APPENDIX B DERIVATION OF EQ(3.9)

In this appendix, we derive eq(3.9). Consider the quantity

RX(ki) = E[xi(n)xi (n - I)xi (n - k)xi(n -I - k)]. (B.1)

In the special case where the process xi(n) is complex Gaussian, then [10]

Rx (k,i) = E[xi(n)xi (n - I)]E[xi (n - k)xi(n - I - k)]

+ E[xi(n)xi (n - k)]E[xi (n - I)xi(n - I - k)]. (B.2)
where use has been made of the fact that E[xi(n)xi(k)]--0 for n#k. However, we do

not wish to constrain this discussion to this restrictive case. Rather, we wish to
consider the more general case of a Gaussian process xi(n) with unconstrained

quadrature components. We therefore consider

xi(n) = xii(n) + j xiQ(n) (B.3)

where the processes xiI(n) and xiQ(n) are jointly Gaussian. Using eq(B.3) in (B.1),

we obtain

RX (k,I) = E { [xii(n) + j xiQ(n)] [xil(n-I) - j xiQ(n-I)]

0 [xii(n-k) - j xiQ(n-k)] [xii(n-l-k) + j xiQ(n-l-k)] (B.4a)

E E { [xi(n)xi(n-l)+YiQ(n)xiQ(n-l)+jxiQ(n)xil(n-l)-jxii(n)xiQ(n-1)]

* [xii(n-k)xii(n-l-k)+XiQ(n-k)XiQ(n-l-k)

+jxii(n-k)xiQ(n-l-k) - jxiQ(n-k)xiI(n-l-k)] } (B.4b)
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=E[x11(n)x11(n-I)xi1(n-k)xil(n-I-k)I + E[xiQ(n)xiQ(n-I)xil(n-k)xjJ(n-I -k)]
+ Efx11(n)x11(n-l)xjQ(n-k)xiQ(n-I-k)I + E [xiQ(n)xiQ(n-I)xiQ(n-k)xiQ(n-I-k)]
- E[xiQ(n)x11(n-I)xj1(n-k)xjQ(n-I-k)I + E[xil(n)xiQ(n-I)xj1(n-k)xiQ(n-I-k)I

+ EI~xiQ(n)xll(n-I)xiQ(n-k)xil(n-I-k)I - E[x11(n)xiQ(n-I)xiQ(n-k)xil(n-I-k)]
+jE[xi1(n)xi 1(n-I)xj1(n-k)xiQ(n-I-k)] - jE[xi 1(n)xil(n-I)xjQ(n-k)xi 1(n-I-k)]
+jE[xiQ(n)xiQ(n-I)xi 1(n-k)xiQ(n-I-k)] - jE[xiQ(n)xiQ(n-I)xiQ(n-k)xil(n-I -k)]
+iL[xiQ(f~xln-)xjJl)j(fl4C)xil(f-l-k)] + jE[xjQ(n)xiJ(n-I)xjQ(n-k)xiQ(n-I-k)]

-jE[xjj(n)xiQ(n- I)xi 1(n-k)xil(n-I-k)] - j E[xi 1(n)xiQ(n-I)xiQ(n-k)xiQ(n-I -k)]

(B.4c)

For Gaussian, zero-mean quadrature components, eq(F.4c) can be expressed
as

R~ (k,I) = 0(]2+ IIR"(k)]2 + 01 (l + k)R0( -I

+0 R~ Q ~R11 +11 uk - 91)k-I

+ Rii(I)Rii(I) + [Rii (k)] + R~ul(I + k)Rii (k - 1)

+ [Rf(I)]2(I + [Rii(k)]2 + Rii(I + k)Rl-i(k - 1)

+ RRI)] + ~(k)]~k + Rii(I + k)Ru? 1(k - 1)

-R91 (I)Ri?'i(I) - Rii(k)Rii (k) - Ri?4 (I + k)Ri'i(k - 1)
IIQ 2I HIQ IQ II

"+ [Rii (1)]~ (t+ Ri(k)Rii (k) + Ri (I + k)Rii (k -1))
"IRI Q 11 QI IQ

11 R~(1)] (I+ Ri (k)Rii (k) + Rii(I + k)Rii (k -1)}
+- R!9(I)R9,1 (I) -Ri(k)Rii(k)+-R 1 1. (I1+ k)RIk- )

11 f ? kR(k -1))

+j fIRI'(I)R9(I) + R!'(k)R!9(k) + R!9(1 + k)Rili(k - 1))

-j f{Rý?(I)R9(I) + R!9(k)Ry?(k) + Rý1( + k)Ri (k -1)1

1Q1 Q I I QI QI QI-j {Rii (IRi()+Ri()i (k) + Rii (I + k)Rii (k-)

-j {R(I)O(I) + RY&k)R9, (k) + Rii(I + k)Rii(k -I)

(B.5)
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where we note that the first two terms in each parenthesis for the imaginary terms
cancel. Since

R() [(1 RQiQ QI0 IQR(I) = [R(1() + Ri(I)] + j [RiI(I)i - Rii(I)] (B.6)

then
IR)2= [RII] QQ-

IR(1)12 =[Ri(I)]2 + 2Rii(I)Rii (I) + [RXQ(1)]2

+ [RQI()]2- 2RQI(I)RQ9 (i) + RiIQ(i)]2 (B.7)

and similarly for IR(k)12 so that

Rxo(k,I)= IRii(I)I 2 + IRii(k)I2 + Fii(I,k) (B.8)

where

Fii(1,k) Rii(l +k)_-Rini(l+ k)} I fRii,([ - k) - RiiQjO(- k)

+ {Rii(I + k) + R!i (I + k)I tRQI -k)+R1 1 IQ k)
j{rII RQQ({ )} QI IQ- j +k)- +k)IfRii(2- k) + Rii4(l - k)

0(1- k -RQl k)I Rii (I + k) + R!9(1 + k) . (B3.9)
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APPENDIX C DERIVATION OF THE EXPRESSION FOR E[s4]

In t" ̀  Appendix, an analytic expression for E[s 4] is derived in terms of the
shape and ,;ale parameters of fs(s) where fs(s) is a Gamma distribution and the

random variable s is real and non-negative. In this case, the observation data
vector process Y-1, = s-1,N described in eq(2.1) has a K-distribution. The author is

indebted to Muralidhar Rangaswamy for suggestinging the following derivation.
For the Gamma distributed fs(s) with non-negative s,

E[s4] - ) S)2 a'ls4 exp(-b2s2 )ds (C.la)

2b
2b j(b) 2a-ls 2 a+ 3  b2s2)d(C.lb)

= f(a) exp(-b(C.)ls)

Consider s=s'/b, so that

%.(s) = F2- (s')2a' 1exp[(s') 2 ]. (C.2)

Now let s'=4•- so that

wa-le-wfW(w) = w"a) " (C.3)

Using s=s'/b and s'=4_-,

E[s 4] = E[(s')4]/b4 = E[w 2]/b4 . (C.4)

However,
.•a+le-w

E[w 2] = j wr•a dw (C.5a)

j (a2)
_ =(a+2 =(a+l). (C.5b)-r(a)-

Using (C.5b) in (C.4)

E[s 4] = E[w 2 ]/b4  a(a+l) (C.6)
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